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In the literature, there are two different asymptotic results for the viscous decay rates 
of inertial modes in a rotating circular cylinder. In the absence of a viscous corner 
solution, either result can only be an estimate of the true decay rate. In this note, we 
numerically calculate the viscous decay rates for some experimentally excited inertial 
modes (Malkus 1989; Malkus & Waleffe 1991) in order to (i) assist in the interpretation 
of these experiments and (ii) to assess the usefulness of the two asymptotic estimates 
available. Our results indicate that the asymptotic estimate due to Kudlick (1966) is 
more accurate and that the asymptotic regime in which this estimate is useful (accurate 
to within 10%) can be smaller than is commonly thought. 

1. Introduction 
It is well known that inertial oscillations with a frequency less than twice the basic 

rotation rate can exist within a uniformly rotating fluid. The dispersion relation for 
the modal eigenfrequencies in a cylinder was first derived by Kelvin (1880) and 
subsequently confirmed experimentally by Bjerknes et al. (1933), Fultz (1959), 
McEwan (1970), Stergiopoulos & Aldridge (1982) and more recently Manasseh (1992, 
1994). A large body of literature now exists cataloguing how such modes may be 
resonantly excited under various conditions within a rotating cylinder (see Manasseh 
1992, 1994 for the main references). Practically, one of the more familiar manifestations 
of inertial wave resonance is the instability of fluid-filled gyroscopes or spinning 
projectiles (Stewartson 1959) which occurs when the nutational frequency is tuned to 
an inertial wave frequency (e.g. Karpov 1965). 

A number of authors have studied the viscous modification of these inertial waves 
within a cylinder in terms of the Ekman boundary layers which form and the possibility 
of viscous shear layers along the characteristic directions (Wood 1965, 1966; Kudlick 
1966; Wedemeyer 1966; Baines 1967; Johnson 1967; Gans 1970; McEwan 1970). Out 
of this body of work, two different asymptotic estimates for the modal viscous decay 
rates in a cylinder have emerged. These estimates differ in the way they treat the corner 
regions of the cylinder where the Ekman layer scalings no longer hold. One estimate 
due to Kudlick (1966) assumes that the corners are sufficiently rounded for an Ekman 
layer to negotiate them without need for rescaling. The other, due to Wedemeyer 
(1966), completely ignores the need for joining corner regions by calculating the decay 
rate contributions for the horizontal and vertical Ekman layers separately. Both 
neglect the possible effect of viscous shear layers emanating out of the corner regions 
as first suggested analytically by Wood (1965, 1966), more recently by Kerswell 
(1994b), and seen experimentally by McEwan (1970) and Manasseh (1992), albeit only 
in certain circumstances. 
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Unfortunately, there has been no definitive experimental work to identify which is 
the more valuable estimate, due in part to the difficulty of measuring decay rates 
accurately. A series of experiments, carried out at the US Ballistic Research Laboratory 
and summarized by Whiting & Gerber (1980), compared Wedemeyer’s asymptotic 
result with experimental measurements of the motion of liquid-filled gyroscopes, 
reporting agreement to within 10% for Ekman numbers below and only 25% 
above lop4. In a related but separate vein, Stergiopoulos & Aldridge (1987) and 
Aldridge & Stergiopoulos (199 1) have developed techniques for measuring the 
complex eigenfrequencies of inertial modes while the fluid is spun up from rest, 
motivated by the fluid-filled projectile problem. Unfortunately, their results are not 
directly relevant here. 

It is therefore the purpose of this note to numerically estimate the viscous decay rates 
of a few select inertial modes in order to assess the accuracy of the two available 
asymptotic estimates. Our choice of particular inertial modes and cylindrical geometries 
to study is motivated by a series of ongoing experiments in which a flow set up within 
an elliptically-distorted, rotating cylinder is observed to bifurcate through the 
excitation of inertial waves (Malkus 1989; Malkus & Waleffe 1991). Two inertial 
modes are found to be elliptically excited if (i) their azimuthal wavenumbers4iffer by 
two, (ii) their frequencies (non-dimensionalized by the rotation rate) differ by two, and 
(iii) their axial wavenumbers are similar. 

For the lowest subharmonic resonance where an m = 1 mode couples with its 
complex conjugate (model 1 = n = 1 in table l), the asymptotic estimates differ by fully 
20%. It is this particular discrepancy and efforts to study the weakly nonlinear 
evolution of this elliptical resonance which were instrumental in initiating the present 
numerical study. Specifically, if the horizontal and vertical Ekman layers can be treated 
in isolation, that is, the corners are unimportant (Wedemeyer’s estimate), then the 
boundary-layer-driven O(E1/2)  internal viscous flow can be found as a closed analytic 
form. Conversely, if the corner regions are important (as in Kudlick’s estimate), this 
leading-order viscous flow can only be obtained as part of a full numerical solution 
found here. 

Table 2 contains the decay rate results for a challenger (1  = n = 3) to the lowest- 
order ( I  = m = n = 1) resonance. Table 3 contains the decay rates for the second 
subharmonic resonance ( I  = n = 2), and tables 4 and 5 the relevant decay rates for the 
lowest-order (1 = n = 1) m = (0, + 2) elliptical resonance. As the point of bifurcation in 
these experiments is determined by the balance between the joint elliptical growth rate 
of the wave pair and the geometric mean of their individual viscous decay rates 
(Kerswell 1994a), the results presented here are then directly testable. 

The paper is organized as follows. Section 2 introduces the inertial wave problem for 
a rotating cylinder and describes the two asymptotic estimates for their viscous decay 
rates. Section 3 presents the numerical formulation of the problem and 94 discusses the 
numerical results. 

2. Asymptotic decay rate estimates 

fluid away from uniform rotation are 
The linearized equations for describing small motions of a viscous, incompressible 

(2.1) 

v - u  = 0, (2.2) 

au 
-++I2 x u+vp = E V U ,  
at 
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in the rotating frame. The basic rotation rate D and cylindrical radius R have been used 
to non-dimensionalize the system, with the Ekman number E = v /QR2 appearing as 
the non-dimensionalization of the kinematic viscosity u. The boundary conditions are 
those of non-slip on the cylindrical surface which is at rest in the rotating frame, 

u = O  on z = O , d  and r =  1. (2.3) 
The inviscid limit, in which E is set to zero and the non-slip boundary conditions are 
relaxed to a no-normal-velocity condition, gives rise to the inertial wave problem, 
where wave solutions 

[u,p]  = [u(r, z ) ,  v(r, z) ,  w(r, z ) ,  @(r, z)] ei(m++At) 

may be sought. The reduction of the problem to one for only the pressure realizes the 
PoincarC equation 

to be solved subject to the boundary conditions 

a@ 2m 
- + - @ = O  on r = 1 ,  ar hr 

-- - 0  on z = O , d .  a@ 
a2 

Separable solutions exist of the form 

(2.5) 

(2.6) 

I. i{(h + 2)  J,-l(kr) - ( A -  2) J,+l(kr)} cos (Inzld) 
- { ( A  + 2) JmPl(kr) + ( A  - 2)  Jm+l(kr)} cos (Inzld) , 

2ihkd(nl)-1J,(kr) sin ( I m l d )  

1 
k p = -- J,(kr) cos ( lnz ld)  ei(m$+At), 

ei(m$+At) 

2(4 - A') 
U =  

where k 2  
[l +k2d2/(n1)2]1/2' 

A =  

and k is a solution, indexed by n such that 0 < k,=, < k,=, . . . , of 

d 2m 
dr h 

r-Jm(kr)+-Jm(kr) = O(,=,. 

Three numbers, 1, n E N, and m E Z, are sufficient to specify the inertial mode and in 
particular the frequency h = &,,. These indices correspond roughly with the number 
of nodes axially, radially and azimuthally, respectively, in the pressure eigenfunction. 

The now well-established corrective procedure to accommodate small but finite 
values of the Ekman number is to fit an boundary layer to the inertial mode 
(Greenspan 1968). Typically, the following expansions are used : 

u = ~ , + i i , + E ~ / ~ ( ~ , + i i ~ ) +  ..., 
p = po +Po + E1/'(pl +P1) + . . . , 

a p t  = ih + E ~ / ~ S  + . . . , 
where [uo,po] is the inertial wave, the tilde indicates a boundary layer variable and 
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- Re(E1l2s) is the viscous decay rate. Application of the solvability condition to the 
O(Eli2) interior equations (see Greenspan 1968, §2.9), leads to an expression for the 
viscous (complex) frequency shift 

where g is the rescaled variable normal to the surface, i.e. i i .V = -E-’/2i3/i3[. The 
leading boundary equations are readily solved in terms of the inviscid inertial wave 
structure, 

where this is just the time-dependent version of Greenspan’s (1968) equation 2.6.12. 
The decay rate expression (2.7) can be evaluated directly by assuming that an Ekman 
layer exists everywhere over the cylindrical surface including the corners. This 
assumption necessarily means that the horizontal Ekman layers fit discontinuously 
onto the vertical Ekman layers in the corner regions. Following this prescription, 
however, leads to Wedemeyer’s expression 

ii x iio iii, = - (ii x u, f iu,) exp l-  “i(h k 2ii- R ) I ~ / ~ > ,  (2.8) 

- (4 -h2) [m2+(d /d )2]  (2 -h ) ( l  +i) (2+h)( l  -i) hd(1 +i) + + h1/2 }. (2.9) ’ - 4 .\/2 d[m2 + ( ~ l / d ) ~  - mh/2]  { (2  + (2 - 
s -  

The formula has been derived for h > 0; extension to h < 0 follows from 
s(m, A) = s*( -m, -A).  

Kudlick’s estimate derives from rewriting (2.7) as 

- JJdSp: u, .ii JJdSVp,’ . /~B,d~-J~dS.Vx /:dE[p:(ii x ii,)] 
S =  - - (2.10) 

JjjluoI2dV Jj 1u0l2 d v 

and then neglecting the last term of the numerator by appeal to the Divergence theorem 
to get the expression 

where cr+ = ( A  +_ 2ii - $). This is the cylindrical analogue of Greenspan’s ( 1  968) general 
result, expression 2.9.13. Evaluation leads to Kudlick’s estimate 

- (4  - h2) 
s -  
- 4 2/2 d[m2 + ( x l /d ) ,  - mh/2]  

+ ( 1  -i) ( 2  2+h - h)’/2 [m2+ 67’--$] + ( 1  + i) [m2 + d/\L’2J. (2.12) 

This procedure implicitly assumes that the integrand, 

ii-V x 1: d[[p,*(ii x Go)],  
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n 

r = l l  
z = o  

c3 
- - 
c4 

sboffom 

1 
n 1 

FIGURE 1. The line integrals $dr-J," d[p@ x 9) along C1 and C2 (and likewise C3 and C4) did 
not cancel owing to the different normals of their attached surfaces. 

is a smooth continuous function over the closed surface. In view of the dependence of 
the boundary layer solution upon the surface normal vector (2.8), this condition is 
actually a restriction upon the surface. For Kudlick's assumption to hold, the geometry 
must have a smooth surface upon which the normal varies continuously and clearly a 
cylinder does not possess this property (see figure 1). In effect, Kudlick treats the 
corners as significantly rounded, i.e. that the radius of curvature is large compared to 

Then there are no corners but rather a continuously varying Ekman layer over 
the entire cylindrical surface. 

The reader should note that 

} (2.13) 
(4 -AS) mh 

2 l/2[m2 + (Kl/d)2 - mh/2] 
- Re(s,) + Re(s2) = 

so that Wedemeyer's estimate for the decay rate is never less than Kudlick's for 
mh 2 0 and the two asymptotic estimates are equal at m = 0. 

3. Numerical formulation 
The equations to be solved are (2.1) and (2.2) subject to (2.3). Axisymmetric and 

non-axisymmetric solutions are sought separately. The streamfunction decomposition 

is used in the axisymmetric case, leading to the equations 
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to be solved subject to the boundary conditions 

$ = $ T = v = O  at r = l ,  
$ T = $ ~ = V = O  at z = O , d .  

(3.3) 

In the asymmetric case, we work with the radial and axial velocities u and w, using 
the incompressibility condition and the azimuthal component of the momentum 
equation to eliminate the azimuthal velocity and pressure. This leaves the equations 

+r2w,,,,+3rw,,,-m2 w,,+2wZ,+2-- r m2w)} ,  r2 (3.7) 

where the exponential factor e'"4 has been suppressed, to be solved subject to the 
boundary conditions 

u = u , = w = O  at r = l ,  

u = w = w, = 0 at z = 0,d. (3.9) 

We use two types of spectral functions built up as appropriate linear combinations of 
Chebyshev polynomials T,(x) = cos (n c0s-l x) so that they satisfy the required 
boundary conditions : 

2(n - 2)  n-1 
O,(x) = Tn(x)-- n - 3  T,-~(x) + n-3 Tn-4(~) 

dO, 
dx 

which satisfies @,(I) = - (1)  = 0 for n 2 4, 

and u',(x) = Tn(x) - T,-z(x) 
which satisfies !P,(l) = 0 for n 2 2. 

(3.10) 

(3.11) 

Chebyshev polynomials are chosen as the basis functions owing to their well-known 
ability to represent a rapidly varying function at the boundary economically. We can 
anticipate needing only O(E-'I4) spectral modes in each direction to resolve the O(E1'2) 
layers on the horizontal and vertical surfaces, requiring O(E-l) storage in total. It is 
worth remarking that both sets of equations ((3.2b(3.7)) are independent of z ,  
suggesting the use of Fourier expansion functions, and the possibility of a banded 
discretization matrix. Hollerbach (1994) has used just such a technique with 
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considerable success working in a spherical shell. However, owing to their uniform 
wavelength throughout the domain, we would need O(E-1/2)  of them to resolve the top 
and bottom boundary layers and consequently there would be no obvious gain in 
storage space. Moreover, imposing the vertical boundary conditions while still 
preserving the banded matrix structure adds further complications to this approach. 

We exploit the symmetries of the inertial waves by actually solving the equations 
only in the upper 'quadrant' (0 < r < 1 ; d / 2  < z < d }  of an extended cylinder viewed 
as the domain { - 1 < r < 1 ; 0 < z d d } .  If m is even (odd), then w, $ are even (odd) and 
u, u are odd (even) functions of r .  Likewise about the cylindrical equator z = d /2 ,  if I 
is even (odd), then u, u are even (odd) and w, $ are odd (even) functions of 

(3.12) 
22 z* = -- 1. 
d 

Hence, for example, in the case when m = I = 1 the spectral expansions used are as 
follows : 

N M  N M  

= C C aij @2i+2(r)  Y2j+l(z*), w = C C bij Y2i+l(r) @2j+2(~*), (3.13) 
i=l j = 1  i= l  j=1 

and form = O , I =  1, 
N M  N M  

$ = X C aij @ z i + z ( r )  @2j+z(z*), v = C C bij Yzi+l(r) Yzj+l(z*>. (3.14) 
i = l  j=1 j=1 

The equations are then collocated in the radial direction using the N positive zeros 
of c N ( r ) ,  and in the axial direction using the M positive zeros of TM(z*).  This recipe 
ensures that the collocation points are concentrated where the solution varies most 
rapidly, that is, at the top and side boundaries and the corner region. 

We are interested in evaluating the viscous decay rates of the low-wavenumber 
modes. Unfortunately, there is no guarantee that these decay rates will be the smallest 
because a higher-wavenumber mode, concentrated in the bulk interior, can have a 
weaker boundary layer and hence decay rate (e.g. see tables 1 and 2). This prevents us 
from simply time-stepping equations (3.2E(3.7) starting with an arbitrary initial state. 
Instead, we are forced to solve an eigenvalue problem. The equations are integrated 
forward in time by one step At using the second-order implicit Crank-Nicholson 
method which leads to the mapping 

AX"+l = Bxn (3.15) 
where x n  is the vector of spectral coefficients at time tn  and the matrices A and B are 
2NM x 2NM, dense and complex (real) in the asymmetric (axisymmetric) case. Once 
the eigenvalues p of the matrix A-lB are obtained via the appropriate NAG routine, 
the complex frequencies 

This method requires that the convergence in At be checked as well as the effect of the 
truncations N and M .  Such convergence is readily achieved, with typically At = 
proving sufficient. The advantage of this implicit-time-stepping method is that it 
prevents the appearance of spurious eigenvalues. 

trivially follow by inverting the relation 
p = e"At. 

4. Results 
Numerically, the problem of reaching down to the experimental Ekman numbers of 

E d  at which the asymptotic decay rate estimates should make sense, is an 
ambitious one. Even with a given azimuthal wavenumber, the problem is two- 
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E 

5 x 10-3 
2 x 10-3 
1 x 10-3 
s x 10-4 
2 x 10-4 
1 x 10-4 
5 x 10-5 
2 x 10-5 
1 x 10-5 

n = l  

1.0041-2.3 19 E ll2 
1 .003i-1.985E1/2 
1.002i-1.823E1/* 
1 .OO 1 i-1.7 12E liZ 

1 .OO li-1 .6 15 E 
1 .OOli-l .566E1/' 
1 .OOOi-1 .532E112 
1.OOOi-1 .500E1/' 
1 .000i-1.483E1/' 

n = 2  

0.508i4456E 1/2 
0.509i-3.287E1/' 
0.509i-2.723 E l/* 
0.5 1 Oi-2.334E l/* 
0.51 1i-1.996E1/* 
0.51 li-1.829E1/' 
0.5 1 1 i-1 .7 12E 
0.5 12i-1.610E l/' 
0.512i-1 .563E1/' 

n = 3  

0.327i-8.045E1/* 
0.337i-5.530E1/* 
0.338i4.260E1/* 
0.338i-3.385E1/' 
0.339i-2.630E1/* 
0.339i-2.256E1/' 
0.34Oi-1 .994E1/' 
0.34Oi-1 .764E1/* 
O.340i-1.650E1/* 

Wedemeyer's estimate -1 .732E1/' -1.585 E '1' -1.474E"' 
Kudlick's estimate -1.45 1 El/' -1.432E"' -1.373 E 

TABLE 1. Frequencies u = ih + E1/'s for d = 1.9898 and rn = I = 1 

E n = l  n = 2  n = 3  

5 x 10-3 
2 x 10-3 
1 x 10-3 
5 x 10-4 
2~ 10-4 
I x 10-4 
5 x 10-5 
2 x 10-5 
1 x 10-5 

Wedemeyer's estimate 
Kudlick's estimate 

1 .789i-3.209E1/' 
1 .789i-2.248E1l2 
1.787i-1.803E1/2 
1.784i-1.501 El/* 
1.78 li-1.24 1 E l/* 
1.779i-1.112E 1/2 
1 .778i-1.022E1/* 
1 .777i-0.943E1/' 
1 .777i4.904E1/* 

4 8 4 0 E  1/2 

-0.809E1/' 

1 .302i-5.548E1/' 
1 .300i-3.948E1/' 
1.297i-3. 169E1/' 
1 .29Si-2.629E1/' 
1.293i-2.156E1/' 
1.292i-1.921 El/' 
1.291i-1 .755E1/' 
1.290i-1.610E1/' 
1.29Oi-1 S37E l/' 

-1.399E"' 
-1.359E"' 

0.950i-9.083E1/2 
0.95516. 190E1/' 
0.953i-4.776E1/' 
0.952i-3.795E1/' 
0.951i-2.938E1/* 
0.95 1 i-2.5 1 OE 1/2 

0.950i-2.209E1/2 
0.95Oi-1 .943E1/' 
0.9% 1.8 1 2 E 

-1 ,525E"' 
-1.490E1/* 

TABLE 2. Frequencies u = ih+ El% for d = 1.9898, m = 1 and I = 3 

E 

5 x 10-3 
2 x 10-3 
1 x 10-3 
5 x 10-4 
2 x 10-4 
1 x 10-4 
5 x 10-5 
2 x 10-5 
1 x 10-5 

Wedemeyer's estimate 
Kudlick's estimate 

n = l  

1.6 14i-2.555E 
1.607i-2.00 1 El/* 
1.603i-1 .734E1/* 
1.599i-1.549E1/2 
1.596i-1 .388E1/' 
1.594i-1.308E1/* 
1.593i-1.2S3E1/* 
1.592i-1.206E1/2 
1.5921-1.181 El'* 

-1.201 E"' 
-1.1 19E"' 

n = 2  

1.01 li-4.888E1/' 
1 .007i-3.602E1/* 
1 .004i-2.974E1/' 
1.003i-2.538 E l/' 
1.002i-2.15 5 E 
1 .OOli-l .967E1I2 
1 .OOli-l .837E1I2 
1 .OO li-1 .728E1/* 
1.000i-1.723E1/2 

-1.590E"' 
-1.5 12E1'* 

n = 3  

0.699i-8.407E 
0.698i-5.783 E l/' 
0.696i-4.499E1/2 
0.696i-3.612E1/* 
0.695i-2.836E1/' 
0.695i-2.452E1/' 
0.69.5-2. 183E1/' 
0.6951-1 .943E1/' 
0.695i-1 .815E1/' 

-1.591E"' 
-1.532E1" 

 TABLE^. Frequencies u = i h + E l r 2 s f o r d =  1.9121,m= 1 a n d 1 = 2  

dimensional with an Ekman boundary layer present in each variable I and z ,  and 
the complicated corner region to resolve at their join. The low-Ekman-number results 
presented in tables 1-5 are produced by runs performed at truncations of N = M = 35 
for m + 0 and N = M = 40 at m = 0, i.e. eigenvalues are found of double complex 
matrices of size 2450 x 2450 and double real matrices 3200 x 3200. These represent 
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E n = l  n = 2  n = 3  

5 x 10-3 
2 x 10-3 
1 x 10-3 
5 x 10-4 
2 x 10-4 
1 x 10-4 
5 x 10-5 
2 x 10-5 
1 x 10-5 

Wedemeyer's estimate 
Kudlick's estimate 

0.985-3.840E 
0.9781-3.084E 11' 

0.973i-2.717E1/' 
0.970i-2.465E1/' 
0.967i-2.2466 11' 

0.9661-2. 139E1/' 
0.965i-2.062E l/' 

0.9641-1 .993E1/' 
0.9631-1.971 Ell2 

-2.167E"' 
-1 3 8  1 E 

0.5971-6.79 1 EL/' 
0.596i4.9 17E 1/2 

0.594i4.001E1/2 
0.593i-3.370E1/' 
0.5921-2.8 19E"' 
0.592i-2.547E1/' 
0.59 1 i-2.355 E 11' 
0.5911-2. 188E1/' 
0.591i-2.072E1/2 

-2.088E1/2 
-1 .901E1/' 

0.41Oi-11. 109E1/' 
0.425i-7.665E"' 
0.425i-5.907E1/' 
0.424i4.687E1@ 
0.424i-3.634E 
0.424i-3. 105E1/' 
0.4241-2.740E l iZ  

0.4241-2.41 8E  
0.4241-2.275E 

-2.001E1/' 
-1.866E"' 

TABLE 4. Frequencies CT = ih+  El% for d = 1.35045, m = 2 and 1 = 1 

E n = l  n = 2  

5 x 10-3 1 .071i-3.659E1/' 0.648i-6.301 El/' 
2 x 10-3 1 .059i-2.999E1/' 0.640i4.648 El/' 
1 x 10-3 1 .053i-2.676E1/' 0.6361-3.841 El/' 
5 x 10-4 1.048i-2.451 El/' 0.6341-3.28 1 El/' 
2 x 10-4 1 .044i-2.255E112 0.632i-2.79 1 E lI2 
I x 10-4 1.042i-2.156E1/' 0.63 li-2.547E1I2 
5 x 10-5 1.04 1 i-2.088 E 0.631i-2.375E1/2 
2 x 10-5 1.04Oi-I .935E1I2 0.630i-2.222E1/2 
1 x 10-5 0.63Oi-2.21 1E1I2 

Wedemeyer's estimate -1.923E"' -1 .964E1/2 
Kudlick's estimate -1.923E"' -1.964E1'2 

TABLE 5. Frequencies u = ih+  E1/'s for d = 1.35045, m = 0 and 1 = 1. 
are the same because m = 0 

n = 3  

0.454i-10.355E1/* 
0.453i-7.172E1/' 
0.450i-5.583E1/' 
0.448i4.484E1/' 
0.447i-3.528E1/2 
0.446i-3.052E1/' 
0.4461-2.7 1 8 E 11' 
0.446i-2.423E1/' 
0.4461-2.269E 1/2 

-1.9 19E"' 
-1.9 19E"' 

The asymptotic estimates 

N E = 10-4 E = 10-5 

16 - 1 S676 - 1.5203 
20 -1.5729 -1.3117 
24 - 1.5676 - 1.6533 
28 - 1.5667 - 1.4737 
30 - 1.5664 - 1.491 1 
33 - 1.5664 -1.4818 
35 - 1.5665 - 1.4834 

TABLE 6. The convergence of decay rates for d = 1.9898, m = 1 = n = 1 with truncation N = M 

maximal truncations in terms of both storage - 300 MBytes - and CPU time - 3 days 
on a Sun SparcCenter 2000 machine running at 13 Mflops. Fortunately, the decay rates 
obtained at these truncations appear converged to three decimal places at E = lop4 and 
two decimal places at E = 

Not surprisingly, the pointwise convergence of the associated eigenfunctions is 
nowhere near so good, with spurious oscillations generally appearing in the interior 
near the axis as the Ekman number decreases much below lo-'. In a way, this is to be 
anticipated as all the effort of the spectral expansions goes into accurately reproducing 

see table 6. 
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FIGURE 2. A plot of the numerical decay rate against Ekman number for the lowest ( I  = n = 1) 
subharmonic resonance m = (- 1, + 1) at d = 1.9898 - see table 1. 

the gradients at the boundary where the collocation points are dense. By design, this 
produces a ‘good’ decay rate estimate but, invariably, the solution away from the 
boundaries suffers as a consequence. Contour plots of the eigenfunctions attempt to 
reproduce the expected inertial wave structure with boundary layers but generally have 
not proved enlightening due to this lack of resolution: hence they are not shown. In 
particular, we have been unable to numerically identify the presence of viscous shear 
layers emanating from the corners. Recent numerical work in spherical shells 
(Hollerbach & Kerswell 1994) has illustrated how the well-known eruptions of Ekman 
boundary layers spawn internal shear layers. It seems likely that the corner regions of 
a cylinder behave in a similar fashion. 

As is to be expected, all the viscous decay results displayed in tables 1-5 show a 
monotonic decline towards a limiting value which scales with El/’ as the Ekman 
number is reduced. In some cases, the numerical value at E = already undercuts 
Wedemeyer’s asymptotic estimate: table 1, n = 1 is a particularly good example of this 
-see figure 2. These results clearly favour Kudlick’s estimate. In other cases, the 
asymptotic regime has still to be reached, with the numerical value still well adrift from 
the asymptotic estimates at E = With hindsight, this is not surprising. Just 
considering the contribution to the decay rate from the interior suggests a corrective 
term of O(E) with a coefficient containing the sum of the wavenumbers squared. As a 
result, an Ekman number of at most lop4 is probably required for the corrective term 
to be just an order of magnitude smaller for a mode with wavenumbers of O(dl0).  

Our results support two conclusions. First, Kudlick’s asymptotic decay rate 
expression appears the better estimate for the limiting decay rate value indicated by our 
numerical results suggesting that the corners are important. That it still remains an 
estimate is clear from the rather arbitrary smoothing of the corner regions employed 
in his derivation. Uncertainties in the corner region, particularly the possibility of 
internal shear layers, give no reason for expecting coincidence of Kudlick’s estimate 
and the numerical decay rate asymptote. Secondly, although the correspondence can 
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be good for low-wavenumber modes, even Ekman numbers of lop5 might not be small 
enough to ensure that Kudlick’s asymptotic result is a good (within 10 YO) estimate of 
the actual viscous decay rate. 

We would like to thank Dr T. J. Ratcliffe of the Newcastle University Computer 
Service for his patience and tolerance of the memory-intensive program runs 
performed during the course of this work on ‘Aidan’, the main university time-sharing 
computer. 

R E F E R E N C E S  

ALDRIDGE, K. D. & STERGIOPOULOS, S. 1991 A technique for direct measurement of time-dependent 

BAINES, P. G. 1967 Forced oscillations of an enclosed rotating fluid. J.  Fluid Mech. 30, 533-546. 
BJERKNES, V., BJERKNES, J., SOLBERG, H. & BERGERON, T. 1933 Physikalische Hydrodynamik, pp. 

FULTZ, D. 1959 A note on overstability, and the elastoid-inertia oscillations of Kelvin, Solberg and 

GANS, R. F. 1970 On the precession of a resonant cylinder. J .  Fluid Mech. 41, 865-872. 
GREENSPAN, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press. 
HOLLERBACH, R. 1994 Magnetohydrodynamic Ekman and Stewartson layers in a rotating spherical 

shell. Proc. R.  SOC. Lond. A 444, 333-346. 
HOLLERBACH, R. & KERSWELL, R. R. 1994 Oscillatory, internal shear layers in rotating and 

precessing flows. J .  Fluid Mech. (submitted). 
JOHNSON, L. E. 1967 The precessing cylinder. In Notes on the 1967 Summer Study Program in 

Geophysical Fluid Dynamics at the Woods Hole Oceanographic Inst. Re$ 67-54, pp. 85-108. 
KARPOV, B. G. 1965 Dynamics of a liquid-filled shell: resonance and the effects of viscosity. BRL 

Rep. 1302. US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 
AD468654. 

complex eigenfrequencies of waves in fluids. Phys. Fluids A 3, 316-327. 

46547 1. Springer. 

Bjerknes. J.  Met. 16, 199-208. 

KELVIN, LORD 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155-168. 
KERSWELL, R. R. 1994a Tidal excitation of hydromagnetic waves and their damping in the Earth. 

KERSWELL, R. R. 19946 On the internal shear layers spawned by the critical regions in oscillatory 

KUDLICK, M. 1966 On the transient motions in a contained rotating fluid. PhD thesis, MIT. 
MALKUS, W. V. R. 1989 An experimental study of the global instabilities due to the tidal (elliptical) 

distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48, 123-134. 
MALKUS, W. V. R. & WALEFFE, F. A. 1991 Transition from order to disorder in elliptical flow: a 

direct path to shear flow turbulence. In Advances in Turbulence 3 (ed. A. V. Johansson & P. H. 
Alfredsson), pp. 197-203. Springer. 

MANASSEH, R. 1992 Breakdown regimes of inertia waves in a precessing cylinder. J .  Fluid Mech. 243, 

MANASSEH, R. 1994 Distortions of inertia waves in a rotating fluid cylinder forced near its 

MCEWAN, A. D. 1970 Inertial oscillations in a rotating fluid cylinder. J .  Fluid Mech. 40, 603-640. 
STERGIOPOULOS, S. & ALDRIDGE, K. D. 1982 Inertial waves in a fluid partially filling a cylindrical 

STERGIOPOULOS, S. & ALDRIDGE, K. D. 1987 Ringdown of inertial waves during spin-up from rest 

STEWARTSON, K. 1959 On the stability of a spinning top containing fluid. J.  Fluid Mech. 5 ,  577-592. 
WEDEMEYER, E. H. 1966 Viscous corrections to Stewartson’s stability criterion. BRL Rep. 1325. US 

J .  Fluid Mech. 274, 219-241. 

Ekman boundary layers. J .  Fluid Mech. (submitted). 

261-296. 

fundamental mode resonance. J .  Fluid Mech. 265, 345-370. 

cavity during spin-up from rest. Geophys. Astrophys. Fluid Dyn. 21, 89-1 12. 

of a fluid contained in a rotating cylindrical cavity. Phys. Fluids 30, 302-311. 

Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland AD489687. 



214 

WHITING, R. D. & GERBER, N. 1980 Dynamics of liquid-filled gyroscope: update of theory and 
experiment. Rep. ARBRL-TR-02221. US Army Ballistic Research Laboratory, Aberdeen 
Proving Ground, Maryland AD489687. 

R. R. Kerswell and C. F. Barenghi 

WOOD, W. W. 1965 Properties of inviscid, recirculating flows. J.  Fluid Mech. 22, 337-346. 
WOOD, W. W. 1966 An oscillatory disturbance of rigidly rotating fluid. Proc. R. SOC. Lond. A 293, 

18 1-2 12. 




